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Introduction 
The integration of the web-based analytical tools “AquaMaps” and “European Fish Index” are key components of 
Task 1.5 Installation of analytical tools and predictive models. The EFI+-tool (Improvement and Spatial extension 
of the European Fish Index) was integrated on a specific ‘tools page’ on the data portal. This report gives some 
relevant background information on these tools and their integration in the portal. This report is the first out of two 
reports on the Freshwater AquaMaps. The current report focuses on the creation of a stable statistical platform 
for mapping freshwater organisms including a stable, reliable, and tested collection of environmental layers and a 
stable system for taking known distribution areas into account (Phase 1) and the integration of some example 
maps into the portal. A second report scheduled for month 44 will report on the bulk production and validation of 
models (Phase 2) and their further integration in the data portal through the webservices from the AquaMaps 
website.  
 

AquaMaps 
Freshwater AquaMaps is an approach to generating model-based, large-scale predictions of freshwater species 
and is based on a methodology, which was originally developed for marine mammals. Models for the freshwater 
AquaMaps are constructed from estimates of the environmental tolerance of a given species and occurrence 
data available through GBIF. Maps show the colour-coded relative likelihood of a species to occur in a global grid 
of half-degree latitude/longitude cell dimensions, which corresponds to about 50 km near the equator. Predictions 
are generated by matching habitat usage of species, in the form of environmental envelopes, against local 
environmental conditions to determine the relative suitability of specific geographic areas for a given species. 
Knowledge of species' distributions within river basins available as shapefiles, is also used to exclude potentially 
suitable habitats in which the species is not known to occur. 
 
The objective of the implementation of AquaMaps in BioFresh is to provide a robust visual interface to 
predicted and actual distribution of primarily European freshwater organisms. Since map parameters can 
be manipulated by the user, e.g., testing for elevated temperatures, or modifying habitat optima, it is also a tool 
for generating scenario maps according to different hypotheses.  AquaMaps can also deliver species 
richness maps for selected organisms. By mapping the suitable habitat it can also be used for predicting areas 
where invasive species may become established.  
 
NRM work on the AquaMaps component of BioFresh proceeded in two phases: (1) establishing a stable, 
reliable, and tested collection of environmental layers for a variety of aquatic organisms, and a stable system of 
areas for delimitation of known areas of distribution (Pfaffstetter basins used as shape files to construct range 
maps).  (2) Phase two consists of adding models of species in a bulk fashion, but with continuous evaluation by a 
GIS specialist familiar with freshwater species distribution.  

Achievements. Twenty-seven global environmental parameters were tested for their relevance in freshwater fish 
modelling. Of these parameters relating to elevation, temperature, precipitation and moisture were most relevant, 
but the degree of contribution of each parameter varied between species.  
 
Model calibration was done using 10 model species drawn from fish, mammals, and amphibians, and three sets 
of data. The first was the ecological relevant set of six to eight parameters for each taxon (termed original). The 
second set was selected based on a statistical approach in two steps (VFIM), and the third was using the full set 
of 27 parameters (ALL27). For the VFIM, first the 27 parameters were tested for correlation using correlation 
matrix and the variance inflation factor (VIF). VIF is a measure of variable multicollinearity, and have been used 
in ecological modeling to verify non-correlations of variables. Correlated variables may induce a bias in model 
estimations and should therefore be treated with caution. A VIF between 4 and 10 has been used as cutoff for 
eliminating variables, since higher levels of VIF are considered to indicate multicollinearity. To simply use VIF as 
a cutoff has been questioned, since the VIF value depends on the properties of the model. Here, we selected the 
value of 10 as cutoff and removed variables with higher values only after confirming high correlation via the 
correlation matrix. When checking for VIF, the variable with the highest value for VIF was removed and this 
process was repeated until no variable with a VIF larger than 10 are apparent in the parameter set. 
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The second step to select parameters for VFIM was based on boosted regression trees (BRT). BRTs are a 
boosted version of regression trees. Classification and regression trees are considered as a very good method to 
use in data mining and investigating the importance of different variables, e.g., ecological variables in a modeling 
set up. It has been used in ecological studies and also in spatial modeling predicting species presence versus 
absence. The BRT approach gives a value of relative importance for each variable used in the model. BRTs 
were constructed for the ten model species separately, using presence/absence data. Since only presence data 
are available from GBIF, we used the species native distributions maps downloaded from IUCN as to define the 
presence area of a species. We then selected 500 random cells within the IUCN map area to represent the 
presence cells, and 500 random cells outside the IUCN map area to represent absence cells. If the species was 
restricted to, or absent from, <500 cells, all cells were used as presence and/or absence data, respectively. From 
the BRT analyses, the six to eight parameters with highest relative importance were selected and used for map 
predictions. The statistical analyses are conducted in R. 
 
To compare the outcome of the parameter sets we calculated the overall accuracy of the models (in percent), as 
the number of correct predictions, i.e., predicted presence in a cell within the IUCN map area and predicted 
absence in a cell outside the IUCN map area, divided by the total number of cells. The proportion of correctly 
predicted presence cells of the total number of presence cells was also calculated for each species. In 
AquaMaps, the predictions gave a probability of species occurrence for each cell, and in this study we investigate 
two levels defining presence of a species; the first at P > 0.05 and the second at P > 0.50.  

 
To validate the model further we used one fish species (Abramis brama) parameter values and occurrence data 
from Sweden, France and the UK, in total 697 cells. These areas were selected since the national program of 
survey fishing in freshwater report all their observations to GBIF in Sweden, France and the UK (Swedish 
National Board of Fisheries). We assume that the occurrence reflects the presence and absence data, and 
hence assume that if a species exists, or have been observed, it is also reported to GBIF. This above mentioned 
assumptions might however include some bias of the actual species distribution, but as a base to evaluate the 
model it should be sufficiently reliable. In this exercise, we use only Sweden and France to extract data from cells 
that contain an occurrence point of the species, i.e., to create the good cells. We then run predictions on the UK. 
In this way we have an independent presence/absence data (UK) on which the prediction using two different sets 
of variables are compared. 
 
In the model we include Pfafstetter basins to limit native distributions. Independent survey data, and literature 
range maps, were used to validate the model outputs showing that AquaMaps predictions of ten species 
representing fish, amphibian, and mammal taxa were well in accordance with the species native distributions 
described in the literature. The accuracy of the model predictions were 83–85% depending on selection and 
number of predictor parameters used in the model. Predictions of suitability of a given species across Europe 
indicated that many of the species are likely to survive or establish outside of their current distribution range. We 
also show that the choice of environmental parameters used in the model effect the accuracy of the predictions 
and that the optimal predictions not necessarily are achieved with statistically selected species-specific 
parameters 
 
Outcomes (1) A manuscript in progress was produced to explain the procedures for Freshwater Aquamaps 
modelling, parameter testing, and validation of model distributions. This manuscript is appended. The 
contributors request that this manuscript does not appear in public domain until it has been accepted by a 
journal. 
 
(2) Environmental parameter layers and drainage basins based on the Pfaffstetter system have been established 
for European freshwater fishes, amphibians, and mammals. Parameters were tested by calculating their relative 
contribution to the predicted distribution patterns for different organisms. Predicted ranges have been tested 
against IUCN shapefile boundaries based on known distributions. Based on this work, a streamlined procedure 
for producing modelled maps for the BioFresh portal is available.  
 
(3) A symposium on AquaMaps modelling was organised by NRM, held in Stockholm 5 September 2011, with 
nine speakers presenting different aspects of modelling with AquaMaps. BioFresh was represented by Johan 
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Östergren (NRM) with the presentation New homes for Fire Salamander, Catfish, and Racoon Dog? – Insights 
from AquaMaps predictions. The abstracts are appended. 
 
(4) The European AquaMaps are currently available for a dozen of freshwater species and will be produced for a 
wider range of species in the near future. These maps can be consulted at both 
<http://aquamaps.org/AM_Europe/search.php> and <http://data.freshwaterbiodiversity.eu/search/listAquamaps> 

European Fish Index (EFI+) 
The EFI+-tool (Improvement and Spatial extension of the European Fish Index) allows assessing the ecological 
status of rivers in accordance with the EU Water Framework Directive. The tool is based on the European Fish 
Index (EFI) developed within the FAME and EFI+ project as a standardised fish-based assessment method 
applicable across a wide range of European rivers. The EFI employs a number of environmental descriptors (see 
http://efi-plus.boku.ac.at/software/insert_data_manual.php, data input matrix) to predict biological reference 
conditions and quantifies the deviation from reference conditions on a statistical basis. 
 

Integration in the portal 

AquaMaps 
European freshwater AquaMaps were generated for a dozen of species. A scientist hired at NRM modified the 
parameter selection based on practical tests and made a C version of AquaMaps showing maps in ArcView and 
statistics in R, and FIN constructed the web interface map data for a large number of species (fish, mammals, 
and amphibians).  
 
The European freshwater AquaMaps are currently integrated in the BioFresh data portal based on the by 
mapping the original output data. This allows the user to browse the different species, visualise them and zoom 
in on a specific area (Fig. 1). In the future, these maps will be integrated in the BioFresh atlas interface, which is 
currently under construction, and will provide access to a wider variety of species and a number of interactive 
options as specified under “Future developments”. 
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Fig. 1: Screenshot of the AquaMaps implementation 
 

Future Freshwater AquaMaps developments 
The start of the work on AquaMaps was delayed by the difficulty to recruit a scientist with the appropriate 
qualifications, initially foreseen for early 2010, it was realized only in January 2011. Phase 1 was concluded up to 
the end of 2011, when the scientist in charge unexpectedly left the position. Phase 2 activities necessarily were 
underprioritized for the need of a stable platform for freshwater modeling.  A replacement is available only from 1 
December 2012, with the explicit mission of populating BioFresh with AquaMaps-modelled maps. Meanwhile, 
NRM has also produced the necessary map files, environmental layers, and a test species list for Australia as a 
step towards having a global AquaMaps presentation instead of a continent-based as it is at present.   

 
The integration of the freshwater AquaMaps in the BioFresh portal will be further improved. The intention is to 
use the web service developed for GBIF, and link on to the AquaMaps website where users can view or create 
maps ad libitum. This web service is currently available, and will be integrated during the development of a more 
advanced mapping interface and geoportal for the BioFresh data portal. 
 

  Page 7 of 8 
 



Deliverable report (D1.3) BIOFRESH FP7 - 226874 
 

  Page 8 of 8 

European Fish Index (EFI+) 
This tool is  integrated on a specific ‘tools page’ on the data portal (Fig. 2) along with a listing of other relevant models and 
tools for freshwater biodiversity researchers. 
 

 
Fig. 2: Screenshot of the BioFresh tools page linking to the EFI+-tool 
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Abstract 
The distribution of species dependent on a freshwater environment is modeled on a large scale 
using a freshwater version of the model AquaMaps. Predictions are based on global occurrence 
data and generated by matching habitat usage of species, termed environmental envelopes, 
against local environmental conditions to determine the relative suitability of specific 
geographic areas for a given species. In the freshwater environment there is a significant 
challenge to the production of range maps due to large biases in the amount and location of 
occurrence data, and due to historical events affecting the connectivity and dispersal of species. 
In the model we therefore include Pfafstetter basins to limit native distributions. Independent 
survey data, and literature range maps, were used to validate the model outputs showing that 
AquaMaps predictions of ten species representing fish, amphibian, and mammal taxa were well 
in accordance with the species native distributions described in the literature. The accuracy of 
the model predictions were 83–85% depending on selection and number of predictor 
parameters used in the model. Predictions of suitability of a given species across Europe 
indicated that many of the species are likely to survive or establish outside of their current 
distribution range. We also show that the choice of environmental parameters used in the model 
effect the accuracy of the predictions and that the optimal predictions not necessarily are 
achieved with statistically selected species-specific parameters.  
  



Introduction 
 
Knowledge on spatial and temporal species distribution is crucial for conservation and 
management of a species. Predicting species distribution in space and time is therefore very 
important. Despite recent advances in spatial- and niche-modeling, and the increasing 
availability of comprehensive online databases of environmental and species occurrence data, 
predicting distribution of species at a global scale remains challenging. Availability of global data 
sets, potential bias in occurrence data, and adequate scale and resolution for the models used, 
needs to be considered. The freshwater environment is particularly challenging to model at a 
global scale, since the habitat may change significantly in short distances, and species special 
habitat requirements may limit species distributions at a close distance. Also, migration and 
dispersal of species in freshwater are affected by historical events as the ice ages, 
geomorphology, e.g., through migration barriers, and also by human activities. Humans have 
been transferring animals, e.g., fish pass migration barriers, to achieve additional areas with a 
species that could serve as an additional food resource (Spens 2008). Humans have also 
introduced migration barriers as dams for milling, water power production etc, which together 
with other anthropogenic effects (e.g. pollution, habitat degradation) have affected the 
distribution of many species and freshwater biodiversity (NRC 1996; Nilsson et al 2005; Geist 
2011). A good species distribution model that uses presence of species, as occurrence points 
reported to some database, optimally would use comprehensive presence and absence data from 
surveys. Many country-based authorities conduct these kinds of surveys in freshwater, however, 
the availability of this information is still limited at a global scale.  Another challenge is the 
selection of appropriate data sets of environmental parameters for the model. Beaumont et al. 
(2005) found that increasing the number of predictor variables caused a decrease in the size of 
areas of predicted presence. There is a risk of over-fitting the model when using too many 
predictive parameters. However, too few parameters will probably under-fit the model. The 
biological relevance of the parameters used also needs to be considered (Synes and Osborne 
2011). 

One approach to modeling species distributions at a global scale is the AquaMaps model 
(Ready et al 2010). The AquaMaps is an approach to generating model-based, large-scale 
predictions of species distribution and is based on a methodology, which was originally 
developed for marine mammals (Kashner et al 2006). Predictions are based on occurrence data 
and estimates of the environmental tolerance of a given species at a resolution of 0.5◦ 
latitude×0.5◦ longitude. AquaMaps is designed to be a transparent and easy-to-understand 
model, which can be used online by researchers and stakeholders. The model also allows the 
incorporation of expert knowledge about habitat usage. Ready et al (2010) compared the marine 
AquaMaps with several other ecological niche models (GARP, GLM, GAM, & MAXENT) and 
concluded that AquaMaps outputs compare well to methods tested. Its transparency, ability to 
incorporate expert knowledge, and online access with a user friendly interface, makes it a 
valuable tool increasing practical use in the context of decision making and planning processes. 

This study describes a version of AquaMaps that is calibrated for the freshwater 
environment. The model use occurrence data from the Global Biodiversity Information Facility 
GBIF, and environmental parameters suitable for niche modeling of freshwater-dependent 
species. For the freshwater environment, to our knowledge, there is no global data set for, e.g., 
pH, water temperatures, ice-cover, depths, etc. available. We therefore use soil data, topography, 
and climatic variables. Predictions from AquaMaps for ten selected freshwater-dependent fish, 
amphibian, and mammal species are presented and compared. We validate the model using the 
species distribution maps from literature and IUCN, as well as electro-fishing surveys. 

The aim with this study is to describe and discuss species distribution maps generated 
by a freshwater version of the model AquaMaps. We also compare two methods of selecting 
environmental data to use in the modeling, one manually selected data set based on ecological 
theory and a second where selection is based on a statistical approach. 
 
Methods 



 
Occurrence data and environmental parameters 
Global occurrence records were extracted from the Global Biodiversity Information Facility 
(GBIF), a comprehensive, online database of species occurrence records from museum 
collections, surveys and other sources (GBIF, 2011). In this study, we extracted data from 10 
species representing three taxa; four fishes, three mammals, and three amphibians, to illustrate 
the model and for model validation. The selected species represent a broad range of life histories 
and habitat preference. For each taxon, we chose species occurring in Europe with a relatively 
restricted as well as a wide native range. Fish species were adequately represented in fisheries 
surveys (e.g. National Board of Fisheries, Sweden) which served as test data in the validation of 
the model. Raw occurrence data (all accumulated occurrence data per species) from GBIF were 
extracted for all species. Occurrence points were cleaned from outliers and points outside of the 
species native range and spatially aggregated into grid cells at a resolution of 0.5◦ latitude×0.5◦ 
longitude. Outliers that were largely separated spatially were checked individually and removed 
if the source indicated the wrong species scientific name. The native range was defined by the 
literature (Kottelat & Freyhof 2007; Arnold & Burton 1978; Steward 1969) and by the species 
distribution maps available online on the IUCN red list of threatened species 
http://www.iucnredlist.org/.  
 The choice of environmental parameters for species distribution modeling may 
significantly affect the outcome of the model, and ecological relevance as well as statistical 
methods may reduce the uncertainty of model predictions (Synes and Osborne 2011). Here, we 
use a set of 27 variables that are comprehensive, publicly accessible global raster data sets and 
key environmental variables based on long-term average conditions. From this data set we 
select six to eight parameters using two methods. First, the original AquaMaps parameters are 
selected based on ecological theory (Austin, 2007), using ecologically relevant parameters for 
the taxa fish, amphibians, and mammals, respectively. A second approach was a statistical choice 
of parameters to use for all species individually. The 27 parameters used are elevation, average 
air temperature in June, mean annual precipitation, net primary production, soil pH, soil 
moisture, soil carbon, compound topographic index (CTI), and additional 19 climatic variables 
which are also considered to be biologically meaningful, and are often used in ecological niche 
modeling (e.g., BIOCLIM, the Genetic Algorithm Rule-set Procedure GARP, maximum entropy 
Maxent). Global datasets of the 27 parameters were downloaded from internet, prepared at 0.5◦ 
resolution covering Europe (8593 cells). All geospatial data analysis was performed using 
ArcMap v.10 (Environmental Systems Research Institute). Data is generally available at greater 
resolutions than the 0.5◦ resolution used here, and was converted to such by calculating mean, 
minimum and maximum values, and used as appropriate for mean, minimum and maximum 
layers. Sources and an explanation to all parameters are presented in Appendix A.1. 
 
Bounding boxes 
In freshwater, species distributions are in many cases restricted by the lack of connectivity or by 
historic events (Spens 2008). This is naturally more common among fish species since they are 
dependent on an open water environment to relocate or invade new areas. Thus, a species may 
be absent in an area with suitable environment or habitat simply because it has not been able to 
migrate there. In this version of AquaMaps, we use Pfafstetter basins to spatially limit 
predictions of native distributions and in this way account for connectivity issues and historic 
events. The Pfafstetter system is a system for watershed classification, and was developed by 
Otto Pfafstetter (Pfafstetter 1989; Verdin & Verdin 1999). The Pfafstetter system is hierarchical 
assignment of watershed IDs based on topology of land surface (digital elevation model or DEM 
and river networks). The watershed IDs are used in an area-to-area navigation program for 
automatic identification of watersheds upstream and downstream of a given watershed. There 
are six basin levels where L1 is the continental scale watersheds and L2 – L6 are finer 
tessellations/sub-watersheds. Here, the Pfafstetter basins are used to create ‘bounding boxes’. 
The bounding boxes are based on the literature and IUCN maps simple by overlaying 
distribution maps of the specific species over the Pfafstetter basin layer in ArcMap v10.  We used 

http://www.iucnredlist.org/


several levels in a modified layer of Pfafstetter basins in order to get a sufficiently detailed yet 
reasonable resolution matching native maps. The modification was done in the following steps: 
Pfafstetter basins were downloaded from USGS Hydro 1K 
(http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro). L1 divided 
Europe into ten major basins, e.g., Danube, Don, Dniepr, and watersheds draining into the 
Caspian Sea (Fig 1). Since the L1 resolution was too wide for our modeling approach, we selected 
L2. This level gave sufficient detail for several areas, for example watersheds draining into the 
Black Sea (Fig 1). However, most of Western Europe was part of one basin and the watersheds 
draining into the Caspian Sea was not separated sufficiently (Fig 1). In these areas, it would not 
have been possible to create native ranges for species restricted by some of Europes’ main 
watersheds, e.g., Oder, Elbe, Rhine, Seine, and Loire. Therefore, these areas were divided into L3 
(Fig 2). The Pfafstetter basin 911 (L3) covered the entire northern coast of the Mediterranean 
Sea and was further divided into L4 (Fig 3). This gave the possibility to predict the native 
distributions of all species that are restricted to a small area in the northern Mediterranean (see 
examples of restricted species in Kottetlat & Freyhof 2007 and Steward 1969). Finally, the 
Caspian Sea basin (L2 = 2; Fig 1) was also divided into L3 and islands were treated as unique 
basins instead of part of an existing Pfafstetter basin since islands have a natural lack of 
connectivity through the open sea (Fig 3). The islands were originally part of Pfafstetter basins, 
for example Ireland and the UK were part of basin 913 together with the river Seine drainage 
(Fig 2). In total, Europe was divided into 131 basins with an average area of 130 180 km2 (SD: 
245 209 km2). 
 
Model description 
A detailed description of the marine version of AquaMaps is provided in Ready et al (2010) and 
also in Kashner et al (2010). Here, we provide a model overview and details on the parts that 
differ in the freshwater version of AquaMaps used in this study.  

Briefly described, the model creates environmental tolerance or suitability curves 
(envelopes) for each environmental parameter. These envelopes are based on the parameter 
values at the locations where the species is found to occur within the species native range and 
have a trapezoidal shape (Fig. 1 of Ready et al 2010). The trapezoidal shape derives from a set of 
rules based on the absolute and preferred minimum, and the absolute and preferred maximum 
for each parameter (for details see Ready et al 2010). The envelope is rescaled to give a 
suitability value (or probability) between 0 and 1, for all parameter values. Predictions are then 
made by comparing the parameter values in all cells with the respective environmental 
envelope, which then give the parameter-specific likelihood (or probability value) for a species 
to occur in each cell. Thus, the likelihood for a species to occur in each cell is zero for values 
≤absolute minimum and ≥absolute maximum. Species-specific relative habitat suitability for 
each grid cell is then computed as the geometric mean of all individual predictor probabilities, 
assuming an equal weighting for all. This is then presented as color-coded probability (between 
0 and 1) for a species to occur in one cell. 
 For the model predictions, we define cells with a species occurrence record that are 
located within the bounding box of the species in question as ‘good cells’, and these are used for 
creating the environmental envelopes. We predict and create two types of distribution maps for 
the ten modeled species; a native map and a suitable habitat map. The native map is restricted 
with the bounding box. The suitable habitat map has no geographic restrictions and covers the 
entire Europe and parts of western Asia, according to the limitations by all Pfafstetter basins 
together (Fig 1). For all species we use three sets of predictor parameters; one parameter set 
based on ecological relevance (termed original), a second species-specific statistically derived 
parameter set (termed VIFM), and finally the whole set of 27 parameters (termed ALL27). 
 
All permutations of the AquaMaps methodology were implemented in a desktop version of the 
software, copies of which are available from the lead author. Note that the online version of 
AquaMaps (http://www.aquamaps.org) is only available in the form of the basic ‘expert quaMaps’ 
method which incorporates independent information about depth preferences and maximum 

http://eros.usgs.gov/


latitudinal and longitudinal boundaries that are available from FishBase. Envelope settings for all 
other environmental parameters have only been reviewed on a case-by-case basis. Given the same 
input settings to AquaMaps, the outputs will always be the same. This in contrast to some other 
methods such as GARP, which produce slightly different outputs with the same input information. 
(Ready et al., 2010). 
 
 
Calibration and validation 
Model calibration was done with the use of three sets of data. The first was the ecological 
relevant set of six to eight parameters for each taxon (termed original). The second set was 
selected based on a statistical approach in two steps (VFIM), and the third was using the full set 
of 27 parameters (ALL27). For the VFIM, first the 27 parameters were tested for correlation 
using correlation matrix and the variance inflation factor (VIF). VIF is a measure of variable 
multicollinearity, and have been used in ecological modeling to verify non-correlations of 
variables (e.g. Singh et al 2010). Correlated variables may induce a bias in model estimations 
and should therefore be treated with care (Graham, 2003). A VIF between 4 and 10 has been 
used as cutoff for eliminating variables, since higher levels of VIF are considered to indicate 
multicollinearity (Graham, 2003). To simply use VIF as a cutoff has been questioned, since the 
VIF value depends on the properties of the model (number of variables, sample size etc., see 
O’Brien 2007 for discussion). Here, we selected the value of 10 as cutoff and removed variables 
with higher values only after confirming high correlation via the correlation matrix. When 
checking for VIF, the variable with the highest value for VIF was removed and this process was 
repeated until no variable with a VIF larger than 10 are apparent in the parameter set. 

The second step to select parameters for VFIM was based on boosted regression trees 
(BRT). BRTs are a boosted version of regression trees. Classification and regression trees (CART; 
Breiman 1983) are considered as a very good method to use in data mining and investigating the 
importance of different variables, e.g., ecological variables in a modeling set up. It has been used 
in ecological studies (De'ath and Fabricius 2000; Kolar and Lodge 2002) and also in spatial 
modeling predicting species presence versus absence (Spens et al 200?; Elith et al 2008). In this 
study, we follow the methods described by Elith et al (2008). The BRT approach gives a value of 
relative importance for each variable used in the model. BRTs were constructed for the ten 
model species separately, using presence/absence data. Since only presence data are available 
from GBIF, we used the species native distributions maps downloaded from IUCN as to define 
the presence area of a species. We then selected 500 random cells within the IUCN map area to 
represent the presence cells, and 500 random cells outside the IUCN map area to represent 
absence cells. If the species was restricted to, or absent from, <500 cells, all cells were used as 
presence and/or absence data, respectively. From the BRT analyses, the six to eight parameters 
with highest relative importance were selected and used for map predictions. The statistical 
analyses are conducted in R (www.r-project.org). 

 
To compare the outcome of the parameter sets we calculated the overall accuracy of the 

models (in percent), as the number of correct predictions, i.e., predicted presence in a cell within 
the IUCN map area and predicted absence in a cell outside the IUCN map area, divided by the 
total number of cells. The proportion of correctly predicted presence cells of the total number of 
presence cells was also calculated for each species. In AquaMaps, the predictions gave a 
probability of species occurrence for each cell, and in this study we investigate two levels 
defining presence of a species; the first at P > 0.05 and the second at P > 0.50. In addition, plots 
of ROC values and accuracy versus cutoff level are provided in Appendix A.2. 

 
To validate the model further we used one fish species, parameter values and occurrence 

data from Sweden, France and the UK, in total 697 cells. These areas are selected since the 
national program of survey fishing in freshwater report all their observations to GBIF in Sweden, 
France and the UK (Swedish National Board of Fisheries). We assume that the occurrence 
reflects the presence and absence data, and hence assume that if a species exists, or have been 



observed, it is also reported to GBIF. This above mentioned assumptions might however include 
some bias of the actual species distribution, but as a base to evaluate the model it should be 
sufficiently reliable. In this exercise, we use only Sweden and France to extract data from cells 
that contain an occurrence point of the species, i.e., to create the good cells. We then run 
predictions on the UK. In this way we have an independent presence/absence data (UK) on 
which the prediction using two different sets of variables are compared. 

 
Results 
 
Occurrence and environmental data 
The occurrence point-data downloaded from GBIF used in the study was not evenly distributed 
within the native range of the model species, with the exception of species with a native range 
restricted to the western part of Europe. Overall, occurrence point data was missing in Eastern 
Europe. Countries as Russia, Ukraine, and Belarus together had < 10 occurrence points of all 
modeled fish and mammals within the native distributions described in the literature. This of 
course had an influence on the predictive potential of the model and illustrates one of the largest 
challenges with spatial modeling using occurrence databases, i.e., lack of or biased data. 
 The average number of occurrence cells (i.e. good cells) for our ten species used for 
modeling was 329 cells (Min–Max: n = 32–548; Table 1). The native range was on average 2292 
cells (Min–Max: n = 72–4831) and the relative ratio of good cells (n good cells/ n cells within 
native range) varied between 1 and 87% (Table 1).   

The VIF values of all 27 parameters, the original and parameters used for VIFM sets are 
given in table 2. All VIFM sets, i.e., the species-specific statistically derived sets, were unique 
across species (Table 3). No species had the same set of parameters as another species. One 
parameter was apparent in all sets, net primary production NPP, and had also the highest relative 
importance with an average of 21% (Table 3). After NPP, six climatic parameters followed, with 
isothermally and mean temperature of driest quarter as the most important. Compound 
topographic index CTI and soil moisture were the two least important parameters (Table 3). 
 
Map predictions 
Given the lack of occurrence data, freshwater AquaMaps performed well in predicting the 
distributions of the modeled species with an average accuracy (suitable habitat map) of 83% for 
the original, VIFM and ALL27 parameter sets at the P > 0.05 level, and an accuracy of 85, 84, and 
79% for the three data sets, respectively at P > 0.50 (Table 4). Predictions of a species with as 
few as 32 good cells (Silurus glanis) gave an accuracy of 70–72% the original and VIFM, despite 
that the relative ratio of good cells only was 1% (Table 4). The highest accuracy were achieved 
for species restricted to the western part of Europe; Lissotriton helveticus, Pleurodeles waltl, and 
Galemys pyreneaicus. These three species had the smallest native range and the highest relative 
ratio of good cells (Table 1). There was a positive relationship between relative ratio of good 
cells and accuracy (original model linear regression: p < 0.05; Adjusted R-squared: 0.41–0.67 for 
P > 0.05 and P > 0.50, respectively), but no relationship between number of good cells and 
accuracy (original model linear regression: p > 0.05; Adjusted R-squared: 0.00–0.06 for P > 0.05 
and P > 0.50, respectively). In spite of the relatively high accuracy, distributions of wide spread 
species were poorly predicted in the eastern part of Europe, e.g., Silurus glanis (Fig. 4–#).  
 The predicted presence of a species (i.e. presence cells within the native range) ranged 
between 34 (Silurus glanis) to 96% (Lissotriton helveticus) at the P > 0.05 level the original and 
VIFM models. There was a positive relationship between relative ratio of good cells and 
presence at the P > 0.50 level (original model linear regression: p < 0.05; Adjusted R-squared: 
0.43), but not at the P > 0.05 level. There was no relationship between number of good cells and 
presence (original model linear regression: p > 0.05; Adjusted R-squared: 0.05–0.15 for P > 0.05 
and P > 0.50, respectively). 

The use of the bounding box significantly improved the predictions of the native maps 
(Fig. 4–#). The bounding box was particularly helpful to restrict distributions on islands, e.g., 
Lissotriton helveticus on Ireland. Also within the native range AquaMaps could identify areas not 



suitable for the species, e.g., the high altitude in the Alps. The native maps were also more 
similar between the models than the all suitable maps (Fig. 4–#). 

In seven out of ten suitable habitat maps, VIFM predictions where more restricted, i.e., 
fewer cells had suitable habitat according to the model predictions, than the maps predicted 
with the original model. For the two species that had been introduced to outside of their native 
range (Silurus glanis and Chondrostoma nasus), this revealed one important difference between 
the models. VIFM restricted the suitability to the native range and predicted that the area to 
where it had been introduced not was suitable for this species. Thus, the VIFM predicted 
unsuitable environmental conditions in areas where the species evidently survived and 
established. The original model, however, predicted correctly that the areas where the species 
had been introduced were suitable for the species.   
 The suitable habitat maps predicted with all 27 parameters gave an accuracy that was 
similar or lower than the models original and VFIM (Table 4), but the predicted presence was 
overall low with an average of 28% compared to 56% at the P > 0.50 level for the original model 
(51 and 77% at P > 0.05; Table 4). For Silurus glanis the predicted presence at the P > 0.5 level 
was only 4%. This also illustrates the importance of considering the number of predictors in the 
model. 
 
Discussion 
 
The freshwater AquaMaps model presented here was developed for predictions of species 
distribution at a global scale, using presence only data and available global environmental data. 
As such, the distribution maps predicted by the model performed well. However, there were 
relatively poor predictions for species with a wide range, in the eastern part of Europe. This is 
most likely due to the lack of occurrence points in this area. Without point data that adequately 
represent the species environmental preference, the model will not be able to predict the species 
distribution correctly. Several countries has not yet digitalized their occurrence information 
from surveys and museum collections, or not yet submitted the data to the GBIF database used 
in this study (Freyhof 2011, unpublished information). Once the information in GBIF is 
complete, the model predictions will improve. The species with the highest ratios of presence 
cells with occurrence points of all cells within the native distribution gave the best results in 
terms of accuracy of the suitable habitat maps. This illustrates the importance of occurrence 
data, however, the AquaMaps model was able to predict relatively well even at a ratio of 1%, 
achieving an accuracy of 70–72%. 

We used bounding boxes based on Pfafstetter basins (Pfafstetter 1989) to limit the 
native maps. This significantly helped the distribution maps to match with the native map in the 
literature. This was not surprising since the bounding boxes were based on the native maps, but 
the good conformity with the native maps from IUCN shows that this can be a suitable approach 
when creating distribution maps for freshwater-dependent species. Also, the model correctly 
predicted high probability of occurrence within the entire bounding box for most species, and 
the suitable habitat maps were also similar to the native distributions. The suitable habitat map 
may be used to investigate the potential distribution outside of the species native range. From 
the suitable habitat maps presented here it is worth noting that many species may be expected 
to survive and maybe establish also outside of the native distribution range. Some examples are 
the species Pleurodeles waltl, Lissotriton helveticus, and Triturus cristatus, that all seem to have 
suitable habitats in parts of Italy, Greece, and Turkey. The two first ones could also potentially 
establish on Ireland. This is interesting and raises the question on why they are not established 
in these areas. One explanation could be the lack of connectivity, or a high cost of colonization 
migration. One obvious reason for the absence of Lissotriton helveticus and Triturus cristatus on 
Ireland and is that this species has not been able to pass the sea that separates Ireland from the 
UK and the rest of Europe. According to Stewart (1969) this two species were able to colonize 
the UK before it separated from the European main land. Other species might have had problems 
to pass large mountains as the Pyrenees and the Alps, e.g., Triturus cristatus, Lissotriton 
helveticus, and Abramis brama, which hindered them to colonize Spain and/or Italy. 



For all species, the current distribution has been affected by historical events, such as the ice-
ages. The ice cover in Europe has naturally limited species to refuge in central and southern 
Europe. The re-colonization that has taken place then depended on the geographic position of 
the refuge (Steward 1969). Other potential factors that might affect the distribution of species, 
not encountered for here, are inter- and intraspecific competition, and predation pressure from 
other species. 

One interesting observation was that the two ways of selecting explanatory parameters, 
or predictors, did not give any overall difference in prediction accuracy. Thus, original 
parameters selected based on ecological theory (Austin 2007), gave similar predictions as our 
statistical approach with individually selected ‘best’ parameter sets VIFM. The VIFM gave a more 
restricted distribution map over the majority of species. For the two fish species that had been 
introduced to areas outside of their native range, VIFM indicated a too restricted prediction. 
According to the model, Silurus glanis and Chondrostoma nasus did not have suitable habitat in 
areas where they had been introduced. Since they evidently survived and established in these 
areas, this illustrates that one should be aware of the potential of a model to over-fit or over-
restrict predictions, and one should be careful to use too many and only statistically derived 
predictors. Our predicted maps using all 27 parameters illustrate the importance of considering 
the number of predictors further. The predicted maps were very restricted compared to the 
other two maps, and the ALL27 map predicted species presence poor and much lower than the 
other models. Beaumont et al. (2008), predicted butterfly distributions using 35 parameters 
from BIOCLIM, and showed that the area of predicted presence decreased with number of 
parameters used in the model with a risk of over-fitting as a consequence. In our study, using the 
6–8 parameters seems reasonable and using all 27 seems to over-fit the model predictions.  

  
MISSING 
 
Conclusions 
The freshwater AquaMaps model presented here performs well in predicting both native and 
suitable habitat distribution maps of freshwater-dependent species. This means that the 
AquaMaps model, originally developed for marine mammals and fish, as a transparent and user 
friendly online mapping tool, also can be used in terrestrial species distribution modeling. The 
approach of using Pfafstetter basins to limit the native distributions works well, and we also 
show with the suitable habitat map that potential distribution outside of the native range can be 
predicted with high accuracy, with as few occurrence points as 32 cells.  Further, the use of a 
parameter set selected based on ecological relevance performed equally well as a parameter set 
selected based on a statistical approach, while the full set of 27 predictors gave too narrow 
maps, basically just reproducing a point map.  
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Table 1. Fish, amphibian, and mammal species occurrence data used for model training and model testing. Common name taken from IUCN. 1 
Species name Abbreviation Common name Taxon N native cells (NC) N good cells (GC) GC/NC (%) 
Galemys pyrenaicus G.pyr Pyrenean Desman Mammal 72 59 82 
Pleurodeles waltl P.wal Iberian Ribbed Newt Amphibian 136 118 87 
Lissotriton helveticus L.hel Palmate Newt Amphibian 526 390 74 
Chondrostoma nasus C.nas Nase Fish 1140 44 4 
Neomys anomalus N.ano Southern Water Shrew Mammal 1528 188 12 
Triturus cristatus T.cri Northern Crested Newt Amphibian 2328 516 22 
Silurus glanis S.gla Wels Catfish Fish 3204 32 1 
Abramis brama A.bra Bream Fish 4483 548 12 
Lota lota L.lot Burbot Fish 4673 464 10 
Lutra lutra L.lut Eurasian Otter Mammal 4831 933 19 
Average    2292 329 32 
 2 
  3 



Table 2. Variance influence factor (VIF) for parameters used in the models for all 27 (ALL), the 4 
13 with VIF < 10 after systematically removing VIF > 10, and the parameters used in the original 5 
models for fishes, amphibians, and mammals, respectively.   6 

Parameter ALL VIF<10 Original Fish 
Original 
Amphibian 

Original 
Mammal 

CTI_Max 1 1.3    
Elevation 4 2.1 1.2 1.3 1.4 
NPP 6 4.0 2.8 2.9 2.9 
PrecipAnMe 7299  5.2 5.2 5.2 
SoilCarbon 4 3.1  3.0 3.0 
SoilMoistu 9 7.3 5.8 6.1 6.1 
SoilpH 6 4.0 2.5 3.3 3.3 
TempMonthM 62  3.4 7.3 8.0 
Bio1 2004     
Bio2 44     
Bio3 42 6.6    
Bio4 1492     
Bio5 8 · 1010     
Bio6 1 · 1011   2.4  
Bio7 6 · 1010 3.9    
Bio8 4 2.3    
Bio9 22 7.3    
Bio10 3054     
Bio11 7965    2.7 
Bio12 7270     
Bio13 111     
Bio14 118 5.9    
Bio15 12 5.9    
Bio16 220     
Bio17 189     
Bio18 52     
Bio19 33 3.7    
 7 

  8 



Table 3. Relative variable importance in percent for the VIFM model of all species. For 9 
abbreviations see table 1. 10 

Variable L.hel T.cri P.wal N.ano L.lut G.pyr L.lot C.nas A.bra S.gla 

CTI_Max       5.4    
Elevation    7.3 2.0 17.7 5.3  5.8  
NPP 10.8 39.6 1.9 21.5 48.1 9.2 5.9 47.2 11.2 11.6 
SoilCarbon  5.4 11.1 3.9  3.9   10.2 16.9 
SoilMoistu 2.2 5.1   1.7      
SoilpH  5.9        8.1 
Bio3 9.1  33.3 7.5 26.3 15.0  12.9  7.6 
Bio7 35.6 3.0  14.3  4.1  6.6   
Bio8  11.9 1.7 7.8 14.6  8.5 13.6 16.8 24.4 
Bio9 3.3 8.1 7.6 6.7   44.7 3.3 23.9 9.4 
Bio14 30.8 10.8 14.7 14.4 3.0 3.2 11.4 6.7   
Bio15 1.4  25.0  1.3 4.8   6.5  
Bio19 4.5  1.3  1.2 35.5     
  11 



Table 4. Accuracy and presence messures of the predicted suitable habitat maps. For species abbreviations see table 1. 12 

Species Accuracy (P>0.05) % Accuracy (P>0.50) % Presence (P>0.05) % Presence (P>0.50) % 
 Original VIFM All27 Original VIFM All27 Original VIFM All27 Original VIFM All27 

L.hel 88 93 97 96 98 97 96 94 82 77 78 47 
T.cri 77 72 82 81 79 80 77 77 55 50 47 29 
P.wal 94 98 99 98 98 99 84 82 70 65 63 46 
N.ano 85 84 87 88 88 85 83 72 48 51 43 21 
L. lut 85 78 74 77 74 61 91 92 56 63 67 31 
G.pyr 89 91 97 97 97 99 89 82 69 69 64 46 
L.lot 80 84 66 76 73 64 46 34 11 34 20 4 
C.nas 89 91 69 88 89 59 78 92 51 60 74 23 
A.bra 75 70 89 76 74 88 47 42 18 29 27 8 
S.gla 72 70 71 70 67 57 81 83 49 63 54 22 

Average 83 83 83 85 84 79 77 75 51 56 54 28 
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Figure 1. 14 

 15 
Figure 1. Pfafstetter basins of Europe and Western Asia downloaded from USGS. Level 1 is 16 
indicated with colors showing ten basins (0–9), and level 2 is indicated with numbers. Examples 17 
of Pfafstetter basins corresponding to river drainages are Danube (red), Dniepr (blue), and Don 18 
(yellow). 19 
  20 



Figure 2. 21 

 22 
Figure 2. Pfafstetter basins of Europe and Western Asia where basin 91 (L2)  is further divided 23 
into level 3, indicated by colors and corresponding numbers. 24 
  25 



Figure 3. 26 

 27 
Figure 3. Final modification of Pfafstetter basins as used in the model comprising 131 basins 28 
indicated by colors. Three basin levels are used and an additional level created by islands. See 29 
text for details. 30 
  31 



Figures 4–# Maps showing species-specific relative habitat suitability for each grid cell 32 

as color-coded probability between 0 (yellow) and 1(red) for a species to occur in one 33 

cell. IUCN native (black) and introduced (blue) area maps are shown.  34 

Lissotriton helveticus, suitable habitat, original (8 parameter) 35 

 36 

Lissotriton helveticus, suitable habitat, VIFM (8 parameter) 37 
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Lissotriton helveticus, native, original (8 parameter) 39 

 40 

Lissotriton helveticus, native, VIFM (8 parameter) 41 

 42 

 43 
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Triturus cristatus, suitable habitat, original (8 parameter) 45 

 46 

Triturus cristatus, suitable habitat, VIFM (8 parameter) 47 

 48 
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Triturus cristatus, native, original (8 parameter) 50 

 51 

Triturus cristatus, native, VIFM (8 parameter) 52 

 53 
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Pleurodeles waltl, suitable habitat, original (8 parameter) 55 

 56 

Pleurodeles waltl, suitable habitat, VIFM (8 parameter) 57 

 58 
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Pleurodeles waltl, native, original (8 parameter) 60 

 61 

Pleurodeles waltl, native, VIF2 (8 parameter) 62 

 63 
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Neomys anomalus, suitable habitat, original (8 parameter) 65 

 66 

Neomys anomalus, suitable habitat, VIFM (8 parameter) 67 

 68 
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Neomys anomalus, native, original (8 parameter) 70 

 71 

Neomys anomalus, native, VIFM (8 parameter) 72 

 73 
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Lutra lutra, suitable habitat, original (8 parameter) 75 

 76 

Lutra lutra, suitable habitat, VIFM (8 parameter) 77 

 78 
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Lutra lutra, native, original (8 parameter) 80 

 81 

Lutra lutra, native, VIFM (8 parameter) 82 

 83 
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Galemys pyreneaicus, suitable habitat, original (8 parameter) 85 

 86 

Galemys pyreneaicus, suitable habitat, VIFM (8 parameter) 87 

 88 
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Galemys pyreneaicus, native, original (8 parameter) 90 

 91 

Galemys pyreneaicus, native, VIFM (8 parameter) 92 

 93 
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Lota lota, suitable habitat, original (6 parameter) 95 

 96 

Lota lota, suitable habitat, VIFM (6 parameter) 97 

 98 
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Lota lota, native, original (6 parameter) 100 

 101 

Lota lota, native, VIFM (6 parameter) 102 

 103 
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Chondrostoma nasus, suitable habitat, original (6 parameter) 105 

 106 

Chondrostoma nasus, suitable habitat, VIFM (6 parameter) 107 

 108 
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Chondrostoma nasus, native, original (6 parameter) 110 

 111 

Chondrostoma nasus, native, VIFM (6 parameter) 112 

 113 

  114 



Abramis brama, suitable habitat, original (6 parameter) 115 

 116 

Abramis brama, suitable habitat, VIFM (6 parameter) 117 
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Abramis brama, native, original (6 parameter) 120 

 121 

Abramis brama, native, VIFM (6 parameter) 122 
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Silurus glanis, suitable habitat, original (6 parameter) 125 

 126 

Silurus glanis, suitable habitat, VIFM (6 parameter) 127 

 128 

 129 
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Silurus glanis, native, original (6 parameter) 131 

 132 

Silurus glanis, native, VIFM (6 parameter) 133 
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Figures ALL27 parameter maps 136 

Lissotriton helveticus 137 
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Triturus cristatus 139 
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Pleurodeles waltl 142 
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Neomys anomalus 144 

 145 
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Lutra lutra 148 
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Galemys pyreneaicus 150 

 151 
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Lota lota 153 

 154 
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Chondrostoma nasus 156 
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Abramis brama 159 
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Silurus glanis 161 

 162 
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Appendix 1 165 
 166 
Data sources to freshwater AquaMaps 167 
Pfafstetter basins: HYDRO1K, U.S. Geological Survey EROS Center 168 
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro 169 
 170 
Elevation: ETOPO2, National Geophysical Data Center 171 
http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ 172 
 173 
Mean annual precipitation: CRU 0.5 Degree Dataset, New et al.(1998), Atlas of the Bioshpere 174 
http://www.sage.wisc.edu/atlas/maps.php?datasetid=34&includerelatedlinks=1&dataset=34 175 
 176 
Net primary production: Foley et al. (1996), Kucharik et al. (2000), Atlas of the Bioshpere 177 
http://www.sage.wisc.edu/atlas/maps.php?datasetid=37&includerelatedlinks=1&dataset=37 178 
 179 
Soil pH, soil moisture, and soil carbon: IGBP-DIS (1998), Atlas of the Bioshpere 180 
http://www.sage.wisc.edu/atlas/maps.php?datasetid=20&includerelatedlinks=1&dataset=20 181 
Willmott and Matsuura (2001), Atlas of the Bioshpere 182 
http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23 183 
IGBP-DIS (1998), Atlas of the Bioshpere 184 
http://www.sage.wisc.edu/atlas/maps.php?datasetid=21&includerelatedlinks=1&dataset=21 185 
 186 
  187 



Worldclim data: 19 Bioclim variables (http://www.worldclim.org/bioclim).  188 
BIOCLIM: Bioclimatic variables are derived from the monthly temperature and rainfall values in 189 
order to generate more biologically meaningful variables. These are often used in ecological 190 
niche modeling (e.g.. BIOCLIM. GARP). The bioclimatic variables represent annual trends (e.g.. 191 
mean annual temperature. annual precipitation) seasonality (e.g.. annual range in temperature 192 
and precipitation) and extreme or limiting environmental factors (e.g.. temperature of the 193 
coldest and warmest month. and precipitation of the wet and dry quarters). A quarter is a period 194 
of three months (1/4 of the year) 195 
 196 
They are coded as follows: 197 
 198 
BIO1 = Annual Mean Temperature 199 
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 200 
BIO3 = Isothermality (BIO2/BIO7) (* 100) 201 
BIO4 = Temperature Seasonality (standard deviation *100) 202 
BIO5 = Max Temperature of Warmest Month 203 
BIO6 = Min Temperature of Coldest Month 204 
BIO7 = Temperature Annual Range (BIO5-BIO6) 205 
BIO8 = Mean Temperature of Wettest Quarter 206 
BIO9 = Mean Temperature of Driest Quarter 207 
BIO10 = Mean Temperature of Warmest Quarter 208 
BIO11 = Mean Temperature of Coldest Quarter 209 
BIO12 = Annual Precipitation 210 
BIO13 = Precipitation of Wettest Month 211 
BIO14 = Precipitation of Driest Month 212 
BIO15 = Precipitation Seasonality (Coefficient of Variation) 213 
BIO16 = Precipitation of Wettest Quarter 214 
BIO17 = Precipitation of Driest Quarter 215 
BIO18 = Precipitation of Warmest Quarter 216 
BIO19 = Precipitation of Coldest Quarter 217 
 218 
This scheme follows that of ANUCLIM, except that for temperature seasonality the standard 219 
deviation was used because a coefficient of variation does not make sense with temperatures 220 
between -1 and 1).  221 
  222 
 223 
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